
Comparing Zope, Django and
Rails

Marc W. Mengel

With application frameworks becoming more popular,
I evaluated two popular packages, and compared
them to decide what to recommend to our Computing
Division developers; namely Django (a framework in
the Python programming language) Zope (another
framework, which significantly extends Python) and
Rails (a frame work in the Ruby programming
language). I found them to be roughly equivalent in
functionality, and thereby recommend Django for our
usage because our developer base is much more
familiar with Python then Ruby.

Overview

I will first present the feature sets available in these packages, and
contrast them where the feature is implemented differently.

1.1 Persistence

Two different persistence models are used in the packages reviewed;
Object databases and Relational databases.

In Rails and Django, persistence is provided through object classes that
inherit from a Model class, and represent rather directly tables in a
relational database, and instances of those objects represent rows in
those tables. Saving object changes to the database is explicit, and
implemented using the obvious SQL INSERT or UPDATE mechanisms.

In Zope, persistence is provided through object classes that inherit from
a Persistent class, and a single object database (ZODB) is used to store
the data. A transaction model with the possibility of conflicts and retries
is provided.

Our experience to date with the ZODB frameworks is that the
performance is less than stellar, and that implementors have to build
separate indexes (which are a great source of database conflict errors
and retries) to speed up searching for data; whereas the relational

database setups can have standard database indexes and query
optimizations used to address performance issues with the persistent
storage. [While one can access relational databases from within Zope,
that is not the usual development/persistence model, and the support is
not done in an object-oriented framework.]

Also, the relational database persistence packages (Django and Rails)
have tools to reverse-engineer object definitions from existing databases,
which makes it much easier to integrate directly with your existing
database applications.

Supported Databases

The various packages support different databases:

django
MySql
Oracle
Postgres
sqlite3

Rails
DB2
Informix
Interbase
MySql
Oracle
Postgres

sqlite
DB2
Sybase

Zope
DB2
Informix
Interbase
Gadfly
MySql
PostgreSQL
Oracle
Sybase
SQLServer

However adding more database back-ends to django is fairly
straightforward for databases with python DB API interfaces; one needs
to find out how to query the database for the database introspection
implementation.

1.2 URL mapping

All of these systems must map URLs to calls in the system. There are
several approaches that are used.

django has a regular-expression mapping system which maps URLs to

Python function calls. This is a fast, low-overhead system; but it is by
design not defined to what objects a given URL calls.

Zope puts object instances in container objects, and the container
hierarchy has a root. This leads to path-based URL mapping where
http://site/a/b/c/d maps to the "d" method on the object tied to 'c' in the
object tied to 'b' in the object tied to 'a' in the root container object -- that
is it works like a file-system.

Rails by default maps everything as http://site/controller/action/id where
the controller is the name of the controller class, and the action is a
template + method name. However, they've recently added a Routing
object class which lets you define URL mappings.

1.3 Template system

All of these platforms provide some sort of templating system for
providing a web-page or XML or text view of data. Zope goes so far as to
make template rendering an implicit method of persistent objects,
whereas the other platforms provide template rendering as a toolkit
method which you can use explicitly in a method you write.

Zope comes with 2 template packages, DTML and TAL. DTML is an
SGML template language, while TAL is an XML based one. TAL has one
advantage above all the other notations here in that it can be loaded and

saved cleanly in nearly all HTML editors (i.e. without damaging the
active parts of the template), so a web designer using, say, DreamWeaver
could edit the template and make it look nice. The disadvantage of both
the Zope template notations is the difficulty in editing them, and the
implied context in which they operate, which makes getting the right
data into the template renderer sometimes difficult.

Ruby comes with 3 template notations, one (ostensibly) for web pages
(although it can be used for plain text, also) , one for XML pages, and one
for javascript pages. The latter two have many shortcuts designed to
allow you to do less typing, or to integrate more nicely with the specific
notation. All of them require knowing at least some Ruby syntax to
understand/edit/modify the page templates.

Django uses one "universal" page template format, which has well
defined notation and tags, but which one can extend with added tags and
"filters".

Django wins for

human editable templates and
one template notation to learn, rather than 2 or 3

1.4 Table Maintenance

Django and Ruby both provide mechanisms for browsing and editing

tables for which model classes exist; but they provide them differently.

Ruby has a "scaffold" generator script, which generates a code fragment
and template files to browse and edit a given database table. The
templates are then editable/customizable.

Django has an automatic "admin" tool, which generates screens on the fly
from model classes. The behavior of this generation (and whether it is
available at all) is modifiable by adding class data to the model class
definition.

If you use packages like Archetypes in Zope, you get edit and view
screens for your data types; but not otherwise.

1.5 interactive command-line mode

In Ruby and Django, you can launch an interpreter which is running in
the environment which your web apps run in, and you can query and
examine data, and render page templates, etc. with relative ease.

In Zope, with suitable imports and so on you can approximate the
execution environment of your code in the web environment, but you
must begin and end object database transactions, etc. by hand.

1.6 Session Management

All three packages provide session management tools; in Zope, the
session management is done for you and you can simply refer to
contex.REQUEST.session all over the place.

In Ruby and Django, you can initiate a session, choose where session
data is stored, and get session data back later in the session.

This is the one category where Zope pretty much wins.

1.7 Forms package

All of these packages have some level of support for generating forms at
a higher level, including:

defining fields with various types and validation
generating HTML for the form
rendering validation errors along with the form

however each of them does this somewhat differently.

Zope has (with Archetypes and CMFFormController) a mechanism for
generating forms, specifying validation scripts/tools and displaying errors
discovered by validators. If you want a form which is not generated by an
Archetypes data type, you have a somewhat complicated page template

to write, or you can use PloneFormGen or Formulator...

Rails has forms calls that can be used in a page template to iterate
through a form specification and render fields; and their scaffold tool will
generate such templates from Models.

django has forms calls that directly render HTML for an abstract form/
field type, as well as a form/model interface type that you can inherit
from and specify a Model, where it will render the form for editing data
for that table automatically.

Of these alternatives, I think django has the nicer interface.

1.8 Caching

All of the packages have middle-ware to support caching particular
object lookups, generated pages, and (at least for Django) regions of
page templates. They differ on how cache expiration is specified and how
easy it is to invalidate caches. All support setting caching headers
appropriately for upstream web caches (i.e. Squid cache, or Apache's
disk/memory caches).

1.9 Programming Language

While Zope is written in Python, it has extended Python nearly to the
point of being a different language.

Rails makes very heavy use of language features peculiar to Ruby, so that
one needs to understand Ruby semantics very well to follow it. We have
very few people at Fermilab with any Ruby experience.

Django is written in, and seems to promote, very straightforward Python
code, and we have lots of experienced Python programmers here at
Fermilab.

Advantage: Django.

1.10 Performance

Both Rails and Django appear to perform well, and are able to take good
advantage of a fast database back-end.

Zope is hindered by its ZODB implementation, which has very poor write
performance and is difficult to index effectively.

Conclusions

Overall these three packages cover a lot of the same territory. Zope
(particularly with Plone) ships with an already implemented content
management system, but if you don't want that included, you have three
packages with some very similar attributes.

Therefore, considering the following:

Performance -- advantage Rails and django over Zope
existing DB integration -- advantage Rails and django over Zope
Programming Language Training -- advantage: django
Template simplicity -- advantage django

I think we conclude that of these packages, Django is the clear winner in
our environment.

Recommendations

I recommend that we pursue Django as a platform for web software
development in the computing division. Toward this end, we should:

Get an official Fermi/Django release together [version 0.96 + updated
oracle back-end]
Install on development systems
Training! Options include:

Suitcase in class from someplace like: lamptraining or
bignerdranch.
PyCon conference has training as part of the conference. (we
missed it here in Chicago in March...)
Offer training internally

